SINGLE CELL TRANSCRIPTOMICS REVEALS THE CELLULAR HETEROGENEITY OF KELOIDS AND THE MECHANISM OF THEIR AGGRESSIVENESS

Single cell transcriptomics reveals the cellular heterogeneity of keloids and the mechanism of their aggressiveness

Single cell transcriptomics reveals the cellular heterogeneity of keloids and the mechanism of their aggressiveness

Blog Article

Abstract Keloid is a dermatofibrotic disease known for its aggressive nature GINGER CHEWS ORANGE and characterized by pathological scarring, which often leads to disfigurement and frequent recurrences.Effective therapies for keloids are still limited, presumably due to the inadequate comprehension of their aggressive mechanisms.In our study, we examined the unique scenario where both keloid and non-aggressive pathological scar originate from the same patient, providing a rare opportunity to explore the aggressive mechanisms of keloids through single-cell RNA sequencing.We found that the HERBATINT 7R dominant fibroblast subgroup in keloids is mechanoresponsive group, which showed enhanced mechanotransduction and migration.This mechanoresponsive fibroblast subgroup is likely to be the key cell population and confer aggressive growth of keloids.

The results also indicate that the endothelial cells and keratinocytes in keloid involve in endothelial-mesenchymal and epithelial-mesenchymal transitions.This study demonstrated the mechanoresponsive fibroblasts and multiple cellular mesenchymal processes could pave the way for further investigations into the keloid aggressiveness.

Report this page